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SUMMARY

An analysis of the low-speed wake characteristics of two-dimensional

cascade and isolated airfoil sections is presented_ based on available

experimental data and supplementary theory. Empirical and theoretical
variations with downstream distance of such wake properties as minimum

velocity_ form factor_ momentum thickness_ full thickness_ and total-

pressure loss are presented. Information is also included to corroborate

theoretical total-pressure-loss relations presented previously_ to convert

area-averaged losses to mass-averaged losses_ and to indicate downstream

variations in air outlet angle.

The analysis indicates a general similarity between turbulent cas-

cade and isolated airfoil wake characteristics (except in the variation

of momentum thickness). The principal result of the analysis is the

observation that the reenergizing of the wake downstream of the blade is

very rapid. The major part of the mixing loss and the changes in wake
i i

characteristics occur within _ to [ chord length behind the blade trail-

ing edge.

INTRODUCTION

An important aspect of current compressor research is the determina-

tion and prediction of losses across axial-flow blade rows. As an ini-

tial step in this pursuit_ attention has been centered on the study of

the basic profile loss of blade sections in low-speed two-dimensional

flow. It has been shown theoretically (refs. i to 6) that, under certain

hypotheses, the loss in total pressure across a cascade of blade profiles
can be related to the characteristics of the wake formed by the blade-

surface boundary layers. In particular (ref. i)_ it was shown that the

principal wake characteristics involved in the determination of the loss

in total pressure are the momentum thickness and the form factor. It was
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further shownthat these two parameters are significant for the correla-
tion of cascade loss data. A fundamental knowledge of blade-wake char-
acteristics was therefore found to be desirable for detailed analysis of
profile losses. A study of blade wakes is also desirable because it can
add to the general knowledge of viscous flow across cascade sections and
maybe useful in understanding and analyzing blade-row interaction
effects.

The present report is concerned with the general nature of the wake
downstreamof low-speed two-dimensional cascade sections. In particular_
the variation of certain properties with distance downstreamof the trail-
ing edge is studied. Empirical or theoretical variations are determined
for such factors as wake minimumvelocity_ form factor, momentumthickness,
full thickness_ total-pressure loss_ and ratio of mass-averagedto area-
averaged loss. The analysis is based on available experimental data and
on available or derived theory for both isolated and cascade airfoil
sections.
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SYMBOLS

constants in equation for minimum velocity

lift coefficient

chord length, ft

factors in equations for analytical velocity profiles (table III)

wake form factor, _*/e

constant in relation for wake full thickness

incidence angle_ angle between inlet-air direction and tangent

to blade mean camber line at leading edge_ deg

wake pseudoenergy factor, k/e

wake pseudoenergy thickness 3 ft

exponent in power velocity profile relalion (table III)

coordinate normal to outlet-flow direction_ ft

total pressure_ ib/sq ft

averaged defect in total pressure_ ib/sq ft
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P

s

sn

U

V

x

static pressure_ ib/sq ft

blade spacing normal to axial direction_ ft

blade spacing normal to outlet-flow direction; ft

undisturbed velocity of isolated airfoil

air velocityj ft/sec

coordinate along outlet-flow direction, ft

o
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H
0

Y

Y

z

6

B*

e

0

_x

ratio Y

coordinate normal to axial direction, ft

coordinate in axial direction, ft

angle of attack; angle between inlet-air direction and blade

chord_ deg

air angle, angle between air velocity and axial direction_ deg

wake full thickness 3 ft

wake displacement thickness_ ft

wake momentum thickness, ft

wake momentum-thickness parameter, {_
\c/ COS

mass density_ ib-sec2/ft 4

solidity_ c/s

total-pressure-loss coefficient based on outlet free-stream

velocity, i 2

PVo,x

total-pressure-loss coefficient based on inlet velocity_
(aY)x

2



4 NACATN 5771

Subscripts:

A

M

min

n

te

u

x

Y

z

0

i

2

area averaged

lower surface

mass averaged

minimum

normal to outlet-flow direction

plane of trailing edge

upper surface

arbitrary outlet location downstream of trail_ng edge

normal to axial direction

along axial direction

free stream

inlet

outlet measuring station

far downstream where complete mixing has taken place

o
O
O

DATA CALCULATIONS

The experimental data used for the correlation of wake character-

istics of two-dimensional airfoil sections were selected from three

sources: (I) two-dimensional cascade tests, (2) isolated airfoil in-

vestigations, and (5) mean-radius region of annular cascades with con-

stant annular area across the blade row and free-vortex blading. Such

annular cascades were considered acceptable for profile correlations,

since essentially equal inlet and outlet axial velocities (as in the two-

dimensional case) are obtained at low speed. Possible end-flow or radial-

flow effects are minimized by restricting the data to the mean-radius

region. Furthermore_ only annular data for which no strong circumferen-

tial variations of total pressure existed at the blade-row outlet were

used. Information concerning the various airfoil sections considered

and the various tunnels used is given in tables I and II.

Complete wake data at varying distances downstream of the blade

were not available for cascade sections_ resulting correlations for the

cascade sections were obtained from a succession of discrete data points
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from various sources. (Although measurements were obtained at several

downstream stations for cascade section 7j it was necessary to treat

these data as discrete points because of small variations in incidence

angle and an uncertainty in the determination of the limits of the

wake.)

Wherever possible_ wake characteristics were computed from the ex-

perimental wake-velocity distributions obtained from measurements of

total and static pressures. In the cascade tests, traverses of total

pressure were made either along planes normal to the axial direction or

normal to the outlet-flow direction (fig. i). In both cases_ static

pressure and flow angle are considered to be constant across the cascade

blade spacing. For isolated airfoils_ however_ variations in static

pressure occur normal to the outlet flow. "Free-stream" velocities at

the edge of the wake of isolated airfoils (as determined by the decrease

in total pressure) are consequently different from the undisturbed veloc-

ity. Two-dimensional incompressible flow is assumed tl_roughout in the

data calculations and in the analysis.

An illustration of a typical wake velocity profile and definitions

of the various wake properties used in the analysis are shown as func-

tions of distance normal to the axial direction in figure 2. Ti_e specific

assumptions involved in the outlet-flow model of figure 2 are given in

appendix A. Corresponding wake properties in a plane normal to the outlet-

flow direction for cascades are obtained by replacing y by n, s by

Sn, and by deleting the subscript y for all wake quantities in figure 2.

All wake properties presented in th_s report are values in planes normal

to the outlet-flow direction. Values computed normal to the axial are

corrected to planes normal to the outlet flow by means of the cosine of

the an_le between the outlet direction and the cascade axis (e.g.,

= <ycos _).

ANALYSIS

The wake of a blade section is formed from the boundary layers on

the upper and lower surfaces of the blade, as shown in figure i. Down-

streem of the trailing edge, the wake is eventually reenergized through

mixing between the wake and the free-stream flow. Inasmuch as a loss in

total pressure is involved in the mixing process_ the ultimate total pres-
sure at s station far downstream where conditions have become uniform will

be less thari at the blade trailing edge. The difference in total pressure

far downstrenm ond at the blade trailing edge is referred to as the mixing
loss.

As the w _,_,keis reener_,::_zed downstream of the blade_ the velocity

profile in the wake changes. In particular_ the minimum velocity in

the trough of the wake and the width of the wake increase with distance
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downstream of the blade trailing edge until uniform conditions are

finally obtained. Concurrently; changes in the other properties of the

wake such as form factor and momentum thickness take place as downstream

distance is varied. Although the rate at which a blade wake is reener-

gized is recognized to depend to some extent upon such additional fac-

tors as the initial state of the wake; the free-stream turbulence level,

the Reynolds number; and the flow Mach number; these factors are not

considered in the present analysis.

Wake Minimum Velocity

A measure of the intensity of the velocity defect in the wake is

given by the downstream variation of the wake minimum velocity. Theo-

retical studies of geometrically similar laminar-wake profiles behind

solid bodies (as discussed in ref. 5) have shown that 3 at some distance

downstream of the body, the ratio Vmin/V 0 (ratio of wake minimum veloc-

ity to free-stream velocity) will vary according to the following two

relations:

@) (-1/2 x
Vmin - i - a + b - d c + b (i)
V 0

or

(x  )i/2: 1 - a + (2)
V o

where a; b; and d are constants_ c is the characteristic length of

the body, and x is the distance downstream of the trailing edge of the

body. In reference 5 the variation of Vmin/Vo in the laminar wake of

the flat plate (of length c) is computed as shown by the dashed line in

figure S.

Analysis of turbulent wake flow (refs. 6 and 7) has also indicated

that the minimum velocity ratio in the wake of solid bodies can be ap-

proximated in the form of equation (2). Reference 6 shows that the ex-

perimental recovery of the wake minimum velocity of several isolated

airfoils can be described by equation (2) with a = 0.1265 and

b = 0.025. The variation of minimum velocity ratio obtained is shown by

the solid curve in figure 5. As expected; higher values of recovery are

obtained for the turbulent wake. The rate of recovery of the minimum

velocity in the wake, however_ is seen to be at a maximum immediately

behind the airfoil trailing edge in both cases.

o
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A plot of the variation of experimental wake minimum velocity ratio

with chord-length distance downstream of the trailing edge is shown in

figure 4 for available isolated and cascade airfoil data. The cascade

airfoil data are indicated by the solid symbols. 0nly smooth-surface

data were used from the various isolated-airfoil references_ and free-

stream velocities are those at the edge of the wake (generally less than

U). The data presented in figure 4 cover a range of blade-chord Reynolds

numbers from about I×i0 S to 5×i0 G (see table I), and therefore represent

turbulent wakes. The turbulent-wake data of figure 4 confirm for both

cascade and isolated airfoils the previously indicated rapid mixing of

the wake immediately downstream of the trailing edge (fig. 3). Approxi-

mately 80 percent of the velocity at the edge of the boundary layer is

recovered within about 0.2 to 0.5 chord length behind the trailing edge
for both the isolated and the cascade airfoils.

Two limiting curves in the form of equation (2) for the isolated

airfoils are shown by the dashed curves in figure 4. Constants for the

upper curve are given by a = 0.075_ b = 0.020, and for the lower curve

by a = 0.130 and b = 0.025. The lower limiting curve for the isolated

airfoil in figure 4 may also serve as a reasonable average curve for the

limited cascade data. Although two data points (blade 7 at x/c = 0.i

and blade 3 at x/c = 0.46) appear noticeably higher than this curve,

the indicated departure from the curve is not considered significant.

In both cases_ the magnitude of the minimum velocity in the wake is not

conclusively established_ and it is conceivable that the true values of

Vmi n may be somewhat less than indicated by the limited profile data.

A representative variation of minimum velocity for the cascade airfoil
is therefore considered to be

v0 1 0.13 + 0.oz (3)

The validity of equation (3) for determining the minimum velocity

ratio of a cascade section at x/c = 0 is somewhat uncertain because of

the complex nature of the wake flow in the region of the trailing edge.

For cascade sections with conventional trailing-edge thickness (i to 3

percent of the chord length)_ strong components of flow normal to the

main flow will most likely exist immediately behind the trailing edge.

In such cases_ measurements in the plane of the trailing edge with

conventional-size pitot-type instruments will reveal some average minimum

velocity which will not generally be zero. For the isolated airfoils_

chord lengths are large (20 to 60 in.) and traillng-edge thicknesses are

practically zero_ so that smooth flow and well-defined zero minimum ve-

locities are obtained experimentally at the trailing edge.



8 NACATN 3771

WakeForm Factor

Information concerning the variation of the wake form factor with
distance downstreamof the trailing edge has been obtained for the iso-
lated airfoil and the flat plate in references 6 and 8, respectively.
Reference 6 showsthat the variation of turbulent form factor with dis-
tahoe downstreamfor isolated airfoils can be related to the variation
of the minimum-veloclty ratio as given by figure 3. It is shownin that
reference that the form factor H
following relation:

can be expressed according to the

xI A ! 7 +

where

and b
Hte is the value of the form factor at the blade trailing edge

is the empirical constant obtained for the minimum-velocity

variation in equation (2).

In reference 7_ the theoretical downstream variation of H for the

laminar wake of the flat plate was determined from the results of refer-

ence 5. Variations of H with x/c for the laminar wake from reference

7 and for the turbulent wake from reference 6 (from eq. (4) with

b = 0.025) are shown in figure 5. Wake form factor is seen to decrease

rapidly immediately behind the trailing edge and to approach asymptotically
a value of i far downstream of the blade.

Experimental values of wake form factor are shown in figure 6 as

functions of chord-length distance downstream of the trailing edge for

available isolated and cascade airfoils. Also shown in the figure are

values of H determined from the theoretical relation of equation (4)

for the limiting values of constant b determined from the experimental

correlation of figure 4. The upper limiting curve in figure 6 repre-

sented by a form factor at the trailing edge Hte of 2.8 and b = 0.025

is shown by the upper dashed line; and the lower dashed line represents

a lower limiting value with Hte = 1.4 and b = 0.020. The available

experimental data fall within these two limiting curves. The general

relation for H given by equation (4) is thus indicated to be represent-

ative of the actual variation of form factor for the turbulent wakes of

both isolated and cascade airfoils.

An empirical variation of form factor with downstream distance can

thus be established from figure 6 for cascade sections on the basis of

equation (5) using a value for b of 0.025 to give

i + O. 025
l i c -- (5)

i - [ = l{te O.

o
o
o
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Calculated values of the representative variation of form factor accord-

ing to equation (b) are shown by the solid curves in figure 5 for a

range of values of form factor Hte at the trailing edge. For values

of chord-length distance greater than about 0.4; regardless of the ini-

tial value of Hte _ the local values of form factor are less than 1.2.

Specifically; the form-factor equation was originally derived for each

leg of the wake. IIowever_ the data presented here; as well as in the

analysis of reference 6, indicate that the results will be applicable
for the entire wake.

In reference I it was indicated that the wake-momentum-thickness

ratio 0/c can be computed from reported values of experimental total-

pressure-loss coefficient_ if the wake form factor is kno_¢n or assumed.

The representative curves of figure S can be used in the form-factor

assumption. At a given measuring station sufficiently far downstream of

a cascade (e.g., x/c greater than 0.5), the results of fi_ire S indicate

that the variation of H with initial value of H_e at the trailing

edge, and therefore with angle of attack_ is not large. This result

suggests that, for simplicity_ a constant value of H may be considered

in the calculation of e/c from the measured total-pressure loss over

the complete range of angle of attack.

Wake Momentum Thickness

The experimental variation of wake-momentum-thickness ratio 8/c

with chord-length distance downstream of the trailing edge is shown in

figure 7 for the available isolated and cascade airfoil data. For the

isolated airfoil, a general decrease in 8/c is observed with downstream

distance. However; for the one cascade data curve_ a slightly increasing

trend is indicated. It was considered desirable_ therefore; to investi-

gate the possibility that a basic difference in the general 8/c against

x/c characteristics of isolated and cascade airfoils may exist.

The equation for the variation of the momentum thickness of the

wake 8 is obtained from the conventional boundary-layer momentum equa-
tion with zero shear stress as

de - (E+ Z) e dV0
: Vo (G)

where V0 is the velocity at the outer edge of the wake. From equation

(6), it is seen that e will increase if V 0 decreases and will de-

crease if V0 increases. In the flow across isolated airfoils, the

wake-outer-edge velocity at the airfoil trailing edge is generally lower
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than the undisturbed velocity. The wake-edge velocity then increases
with downstreamdistance until it asymptotically approaches the undis-
turbed velocity at a theoretically infinite distance downstream(refs.
8 to 10). Typical variations of wake-edge velocity for isolated air-
foils are shownin figure 8. The decreasing variation of 0/c with
x/c for the isolated airfoil is_ therefore, understandable on the basis
of equation (8).

For the two-dimensional cascade3 if the free-stream velocity is
essentially constant in the y-direction between the wakes at all down-
stream positions (as is generally borne out by experiments), it can be
shownfrom continuity considerations that the free-stream velocity at
the edge of the wake will tend to decrease with increasing distance
rather than increase as in the case of the isolated airfoils. For exam-
ple, consider the simple case of an unstaggered cascade of airfoils
(_l = O) at spacing s. The continuity equation between the plane of
the blade trailing edge (subscript te) and far downstreamwhere the wake
has mixed and the flow is completely uniform across the entire blade
spacing (subscript ®) is given for two-dimensional incompressible flow
by (fig. l)

2 [,s12 VteVtedY - VO,te

12 J_s/2 V0'te
v0t°[

@ - -,O-s/2 ',1

For the assumption of uniform free-stream velocity between the wakes_

the integral in the equation is equal to the displacement thickness of

the wake 6_e (fig. 5). Thus, the ratio of free-stream velocity at the

trailing edge to free-stream velocity far downstream becomes a simple

function of the ratio of wake displacement thickness at the trailing

edge to blade spacing

. 1 (7)
v_ i - (_e/S)

Values of Vo,te/V. as functions of displacement-thickness ratio are

shown in figure 9. Therefore the cascade free-stream velocity must de-

crease with downstream distance for these assumed flow conditions. A

corresponding increase in @/c with x/c should then be obtained for

the cascade according to equation (6).

Actually, the variation of @/c with x/c resulting from the cas-

cade continuity effect can be determined quantitatively from the theo-

retical flow model of figures I and 2. In appendix A, theoretical rela-

tions are derived (from the continuity equation and the equations of

o
O
O
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momentum in the axial and tangential directions) for finding the local

momentum-thickness ratio 8/c as a function of the local form factor H

for fixed conditioms of a_ (8/C)te; Hte; and _te" Then; from the ana-

]ytical variation of H with x/c given by equation (5)_ a correspond-

ing relation for O/c as a function of x/c is obtained. Calculated

variations of 8/c are shown in figure i0 for a range of values of u;

Hte , (8/°)te, and _te" For unstalled cascade flow ((e/O)te <0.03;

Hte_2.0_ approx.)_ the increase in wake momentum thickness due to the

simplified cascade continuity effect is indicated to be small. Most of

the increase occurs immediately behind the trailing edge where the change

in form factor; and; therefore; in displacement thickness_ is the

greatest. For x/c>0.2 very little further change in 8/c occurs for

any set of trailing-edge conditions.

Although uniform flow is generally observed downstream of the cas-

cade_ it is recognized that flow gradients in the y-direction may occur

in the immediate region of the trailing edge. Such gradients may alter

the influence of the continuity effect on the wake-edge velocity varia-

tion and make the prediction of the 8/c variation uncertain in the re-

gion of the trailing edge. In general_ for a given airfoil section, the

variation of a/c will be a result of the combined effects of the con-

tinuity condition and the normal static-pressure variations. According

to consideration of the downstream variation of mixing loss_ as indicated

in a later section_ however_ it is likely that some increase in 8/c

does occur immediately downstream of the trailing edge in a real two-

dimensional flow. Additional experimental analysis is necessary to con-

clusively establish the variation of e/c for the cascade.

Wake Full Thickness

The full width of the wake is generally considered to be the extent

of the region where the total pressure shows a defect. For practical

purposes in the analysis; the wake limits were arbitrarily based on the

points where the velocity in the wake was equal to 0.995 of the free-

stream velocity for the sections for which profile data were available.

The downstream variation of experimental wake-full-thickness ratio 8/c

obtained for the available data (only isolated airfoil data were availa-

ble) is shown in figure ll(a). According to these data_ the approximate

relation _/c _ (x/c + h)i/2 obtained from turbulent-w_ke theory (refs.

7 and 9) does not appear to be valid for x/c <i.

The plot of the increase in _/c downstream of the trailing edge

shom_ in figure ll(b) indicates that a single curve may be obtained to

approximate the downstream increase in full thickness. A simple empiri-

cal relation for 8/c up to x/c = 2 can then be giv@n as
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5 = 6 + 0.052

x e

(s)

The empirical variation for increase in 5/c is shown by the dashed line

in figure ll(b).

Although the absence of experimental data prevents any conclusions

concerning the full-thickness variation of the wakes of cascade sections_

it is believed that the empirical increase in 5/c derived from the

isolated-airfoil data (fig. ll(b)) may also be representative of the cas-

cade airfoil for equivalent values of trailing-edge full thickness. This

belief is based on the observation (established from the plots of wake

minimum velocity and form factor in figs. 4 and 6) that the mixing proc-

esses in the wakes of conventional cascade and isolated airfoils are

similar. However, experimental evidence is necessary to establish the

trend ffor the cascade airfoil.

o
o
0

Air Outlet Angle

Another important property of the cascade flow that is affected by

the downstream variation of the wake characteristics is the air outlet

angle. For the assumed flow model (fig. 2 and appendix A), conservation

of momentum in the y-direction requires that the air outlet angle _x

increase with distance downstream of the trailing edge according to equa-

tion (AIg) in appendix A. Calculated variations of _x with x/c are
A

shown in figure 12 for several values of _te_ 8te, and Hte. According

to these theoretical resu!ts_ essentially no downstream changes in air

outlet angle should occur due to the cascade continuity effect for loca-

l
tions beyond about _ chord length behind the trailing edge.

Total-Pressure Loss

According to the theoretical developments of reference i_ the total-

pressure-loss coefficient in a plane at an arbitrary distance x down-

stream of the trailing edge can be expressed as

_ { o0 ?
uos x/ \3 x : l/

(9)

where _x = (8/C)x a/cos _x and (£_)x is the mass-averaged loss in

total pressure up to the arbitrary stationA(eq. (15)). In equation (9)

it is seen that if the variations of Hx, 8x, and _x can be determined
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as functions of distance x/c s then the corresponding loss coefficient

can be computed as a function of x/c. An empirical variation of Hx

with x/c has been established _reviously in equation (5). Theoretical
equations for the variation of ex and _x are developed in appendix

A. Calculated variations of _x against x/c s as shown in figure 15,

were generally similar to the theoretical variations of (e/C)x shown in

figure i0.

Calculated values of the downstream variation of loss coefficient

expressed in the form _l,x(COS _te/COS _1 )2, as obtained from equation

(9), are shown in figure 14 for a range of values of _te, Htes and _te"

These results show s as suspected previously s that a rapid rise in total-

pressure loss occurs immediately behind the trailing edge. According to

these calculations s approximately 90 percent of the mixing loss has oc-

i

curred at _ chord-length distance downstream of the blade.

The primary factor governing the magnitude of the relative increase

in loss is found to be the wake form factor at the trailing edge. This

observation is demonstrated in figure 15 s which shows the variation with

x/c of the ratio of the loss at station x given by (fi_)x to the loss

at the trailing edge (Zi_)te obtained from equation (9) as

(t_)te Wl, te @te lJ_l- @teHte__ __ _ - _xI_x/
(io)

In equation (i0), _x and _x were obtained from the theoretical devel-

opments of appendix A, and H x was obtained from equation (5).

Furthermore, it is noted that the use of definitions of loss coef-

ficient other than Wl,x may not necessarily indicate true downstream

variations of the loss in total pressure. For example s a loss coeffi-

-- --)x/l 2cient based on outlet velocity u)x = (ZiP _PVo, x is frequently used

in cascade practice. For this definition, the ratio of loss coefficients

_x/_te is given by

-- V 2

_te (t_)te \VO,x /
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Since (V0,te/V0, x) will vary with x/c (the relation between V0, x and

V0,te as a function of wake characteristics is obtained from eqs. (A12)

and (AI5) in appendix A), a true ratio of total pressures will not be

obtained with downstream distance.

The variation of total-pressure loss given by equation (9) can also

shed some light on the question of the probable downstream variation of

the cascade wake-momentum-thickness ratio, e/c. As indicated previously

(fig. i0), theoretical calculations based on the assumed flow model for

the cascade revealed an increase in e/c immediately behind the blade,

but the limited experimental data (fig. 7) were not sufficient to estab-

lish any trends in this region. It is possible nevertheless to interpret

the experimental data of figure 7 as suggesting a constant value of e/c

with x/c. If constant values of e/c (in conjunction with the empirical

variation of Hx (eq. (5)) and the theoretical variation of _x are used

in equation (i0), however, unrealistic values of loss ratio are obtained.

It seems likely, therefore, that some increase in e/c does occur im-

mediately downstream of the trailing edge in the actual two-dimensional

cascade flow.

8
o

Mass-Averaged and Area-Averaged Total-Pressure Defect

In experimental cascade practice, the loss in total pressure in the

wake at the measuring station is often expressed in terms of an area

average, where

i/-s/2
_A =Sjs/ 2 (Po - P)dy (l_)

In theoretical analyses of cascade losses (ref. i, e.g.), the loss in

total pressure is expressed in terms of a mass-averaged defect given by

_s/2

SM d-s�2 pv_.(Po- P)dy= (13)
s/2
s/2 oVerly

It is convenient, therefore, to determine the variation of the relation

between mass and area averages of total-pressure defect with downstream

distance so that the available experimental data and theoretical rela-

tions can be readily compared.
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An insight into the comparison of the two averaging methods was ob-

tained by investigating the ratio of mass-averaged to area-averaged

total-pressure defect of several representative analytical wake velocity

profiles shown in figures 16(a) to (d). Equations for the velocity dis-

tribution V/V 0 in each wake profile are given in table III. (The wake

profiles are symmetrical about the point of minimum velocity at

Y = Y/(_) = 0") The gener am equation for the ratio o f mass-averaged t o

area-averaged defect (£J_)M/(ZX_)A , henceforth called the averaging ratio,

is developed in appendix B, and the specific equations obtained for each

velocity profile are listed in table III.

The theoretical averaging ratio_ as indicated in table III; depends

on the magnitude of the minimum velocity ratio Vmin/V 0 and the ratio

8y/S n of the wake full thickness 8y to any arbitrary spacing interval

sn normal to the outlet flow. Calculated variations of the averaging

ratio against wake-minimum-velocity ratio are shown for the analytical

profiles in figure 17(a) for two values of the full-thickness to spacing

ratio 8/s n. It is seen that finite values of averaging ratio are ob-

tained in the limit as $_0 or sn _ _(_/s n = 0).

The effect of the wake full-thickness to spacing ratio on the aver-

aging ratio is shown in figure 17(b)_ which shows a plot of the variation

of the averaging ratio as an arithmetic average value of all four pro-

files against 8/s n. In figure 17(b)_ the averaging ratio is expressed

as the ratio of the value of the averaging ratio at any _/s n to the

value of the arbitrarily selected reference averaging rntio st

_/s n : O.

Experimental values of averaging ratio are shown in figure 18(a)

for the available cascade and isolated airfoils. For the cascade air-

foils, the interval over which the loss integrations were conducted was

taken equal to the normal spacing between blades (Sn in fig. i). For

the isolated airfoil; the interval of integration was arbitrarily taken

between the points where the outlet velocity attained the free-stream

value. In keeping with the previous definition of wake full thickness;

the width of the wake was established at the points where the wake V/V 0

attained a value of 0.995. Thus 3 for the isolated airfoils_ the rati_

8/s n was somewhat less than I. Also shown in the figure by the dashed

lines are the calculated variations of averaging ratio determined for

representative analytical profiles for limiting values of _/s n obtained

in the experimental data.
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The experimental values of averaging ratio in figure 18(a) were cor-

rected to a common reference value of _/s n : 0 by dividing the

averaging-ratio values of figure 18(a) by the appropriate ratios of the

averaging ratio given in figure 17(b). The corresponding corrected val-

ues are shown in figure iS(b). It was possible; therefore, to derive a

satisfactory empirical variation of the averaging ratio with minimum-

velocity ratio for the reference condition of zero b/s n as shown by

the solid curve in figure !8(b).

Derived variations of (_)M/(_)A over a complete range of _ll-

thickness to spacing ratios were then obtained from the empirical curve

found in figure 18(b) for 8/s n = 0 in conjunction with the averaging-

ratio ratios presented in figure 17(b), as shown in figure 19(a).

Furthermore, since minimum-velocity ratio is expressed analytically as

a function of the chord-length distance downstream of the blade (from

fig. 4), the averaging ratios can then also be expressed as a function

of chord-length distance downstream from figure 19(a) and equation (S),

as shown in figure 19(b). Thus; from figure 19_ if the ratio _/s n is

known (8/s n = _y/S) and either the wake-minimum-velocity ratio or the

chord-length distance downstream of the trailing edge is known; the ratio

of mass-averaged to area-averaged total-pressure defect can be determined.
I

According to these results_ for measuring stations located between K and

i chord length downstream of the blade trailing edge; the ratio of mass-

averaged to area-averaged defect in total pressure for conventional cas-

cade sections can vary from about 0.88 to about 0.95.

In most cases; the averaging ratio for the total-pressure defect

presented in figure 19 will be identical to the averaging ratio of the

total-pressure-loss coefficient. For the loss coefficient based on inlet

velocity _7 x (defined in eq. (9)), since (V_) M = (VI2)A ,

( l,x)M (J)M

($l,x)A (Z)A

On the other hand, for example, if a loss coefficient is defined as

(_/_ p_ where V7 is the area-averaged outlet velocity, the conver-

sion to a mass-averaged loss coefficient will also involve the relation

between the reference velocities of the area-averaged loss coefficient

and the desired mass-averaged coefficient. The appropriate relations

between the reference velocities will generally be expressible in terms

of the wake characteristics from consideration of the flow model of

figure 2.

0
0
0
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K-H Relation in Theoretical Loss Equation

In order to obtain a useful theoretical^equation for loss coeffi-

cient based on the wake characteristics of 8x and Hx only (as in eq.

(9), e.g.), it was convenient in reference i to use an approximate rela-

tion between a pseudoenergy factor K (fig. 2) and the form factor H

determined analytically from the power velocity profile as

H +l (14)K=3H_ I

Additional experimental data are now presented to investigate further

the validity of this approximation.

A comparison of values of K against H obtained from numerical

integration of the available experimental wake velocity profiles and

from theoretical calculations of the analytical profiles of figures 16(a)

to (e) are shown in figure 20. The experimental data were taken at down-

stream positions for which the wake minimum velocity is greater than zero

(x/c greater than 0.02). Equations for V/V 0 and K for these ana-

lytical profiles are given in table III.

The final measure of the validity of the K-H relation is obtained

from a comparison between the values of loss coefficient obtained from

the theoretical equation in conjunction with known experimental values

of _ and H, and th_ values of loss coefficient obtained from direct

integration of the total-pressure defect. Loss coefficients computed by

the theoretical equation (eq. (42) in ref. i) checked with those deter-

mined by direct integration (eqs. (2) and (40) in ref. i) within about

_i percent for the available cascade data considered herein. The K-H

relation of reference i_ therefore_ constitutes a valid approximation

for downstream cascade-measuring-station locations at x/c > 0.02.

In the plane of the trailing edge (x/c = 0) where the wake minimum

velocity is zero_ it was found from the isolated airfoils that the ex-

perimental K values were somewhat larger than the values in figure 20.

A different H-K relation may therefore exist at the trailing edge when

Vmin/V 0 = 0. However, if loss coefficients for complete mixing are de-

sired, the K-H relation is of no consequence since only the wake _te

and Hie sre required (ref. i).

SUMMARY OF RESULTS

In the preceding analysis of the low-speed wake characteristics of

two-dimensional isolated and cascade airfoils_ it is shown that empirical
or theoretical relations can be obtained for the variation of various
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properties of the wake with distance downstreamof the trailing edge.
For the range of airfoil geometries and flow conditions covered, a simi-
larity of the wake developments of the isolated airfoil and the cascade
airfoil was observed in the downstreamvariation of the wakeminimum
velocity and wake form factor. However, an apparent region of dissimi-
larity in the wake developments was found in the variation of momentum
thickness. Both theory and limited experimental data indicate that cas-
cade wake momentumthickness in two-dimensional flow tends to show a
slight increase with downstreamdistance_ while_ for the isolated airfoil 3
wake momentumthickness decreases. However_additional experimental data
are necessary to conclusively establish the momentum-thicknessvariation
of the cascade airfoil. Data were not available to comparethe varia-
tions of wake full thickness.

The principal result of the analysis is the observation that most
of the reenergiziug of the wake occurs within a relatively short distance

1
behind the blade. For example_within _ chord length downstreamof the
blade_ the experimental minimumvelocity in the wake has attained 0.75 to
0.85 of the free-stream value3 and the experimental wake form factor has
fallen off to 1.2 or less. The greater part of the downstreamvariations
in wake momentumthickness, air outlet angle_ and mixing loss are also
indicated to occur within a short distance behind the blade. For conven-
tional sections, practically the entire additional loss in total pressure

1
arising from the mixing of the wake is incurred within _ chord-length
distance behind the blade. Theoretical calculations showedthat the
downstream increase in loss resulting from the wake mixing is primarily
a function of the form factor of the Wakeat the trailing edge.

Experimental loss data were utilized to verify the validity of one
of the principal assumptions in the theoretical cascade loss developments
of reference 13 which were used as the basis of the theoretical develop-
ments in the present report. Theory and experimental data were also used
to derive variations of the ratio of mass-averaged to area-averaged total-
pressure loss as a function of wake minimumvelocity or downstream
distance.

ooo

CONCLUDINGREMARKS

The results of the preceding analysis of wake characteristics can
find application in the interpretation and utilization of two-dimensional
cascade data in several respects. Since variation of mixing loss with
downstreamdistance can be large_ it is desirable for proper comparison
of losses from different configurations to take into account any differ-
ences in measuring-station location. Measurementsof cascadeblade

1
losses usually taken between _ to 1 chord length behind the blade, accord-
ing to the mixing-loss variations determined in the analysis 3 will include
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practically the entire mixing loss. Furthermore_ it may be desired to

utilize cascade loss data obtained at a downstremm location to correlate

blade boundary-layer characteristics with the velocity distribution or

velocity diffusion on the blade surfaces. For such correlations_ correc-

tions for the differences in wake and loss characteristics between the

measuring station and the blade trailing edges should be considered. The

deduced ratios of mass-averaged to area-averaged total-pressure loss

(fig. 19) can be utilized in cascade investigations to permit the reduc-

tion of the loss data in terms of the simplified area-averaged loss coef-

ficient and then to convert these data to mass-averaged loss coefficients

as indicated by the derived relations.

Knowledge of blade-wake characteristics may also be helpful in com-

pressor research. Although it is recognized that such compressor factors

as compressibility and secondary and unsteady flows will influence the

wake development in the compressor_ the airfoil-section data presented

may be drawn upon to gain an insight into the general behavior of the

wake of blade sections. Such information concerning the variation of

the wake full thickness and the wake minimum velocity may be useful for

preliminary studies of blade-row interference effects (relative unsteady

motions and wake interactions). Experimental investigations of wake pro-

files relative to rotating blade rows can also make use of the fundamental

wake characteristics of blade sections. Finally_ the results point to

the important part that may be played by mixing losses in the development

of the total-loss picture in the compressor.

In view of the very limited experimental information available for

cascade sections; it is felt that additional data would be desirable to

more conclusively define the development of the wake in the cascade.

Furthermore; since the correlations obtained herein have all been based

on low-speed flow; the effect of compressibility on the wake development

should be determined in order to permit a more significant application

to the compressor configuration. It is known that such wake characteris-

tics as form factor and mixing lossj for example_ will vary significantly

with local Mach number (refs. 2 and 18). Information concerning the ef-

fects of changing free-stream turbulence level and blade-chord Reynolds

number on the wake developments should also be of interest.

Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics

Cleveland, Ohio_ June 18; 1956
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APPENDIXA

THEORETICALVARIATIONOFWAKEPROPERTIES(e/c), 8, and

The theoretical downstreamvariations of such wake properties as
the momentum-thicknessratio (@/C)x, the momentum-thicknessparameter
_x, the total-pressure loss (_)x, and also the variation of the outlet
flow angle _x are based on a model of the outlet flow at any arbitrary

i
distance downstreamof the cascade (within about i F chord lengths) as
illustrated in figures ! and 2. Specifically_ the assumptions madein
the development of the equations (as in ref. i) are: (i) the flow is
two-dimensional and incompressible 3 (2) the inlet flow is uniform across
the blade spacing (y-direction), (5) the outlet static pressure and flow
angle are constant across the entire blade spacing_ (4) the outlet total
pressure is constant in the free stream outside the wake, and (5) the
outlet free-stream total pressure is equal to the inlet total pressure.

o
o
o

Momentum-Thickness Ratio

For the type of flow illustrated by the theoretical flow model of

figures i and 2_ consideration of axial momentum requires that

s/2
s/2 pV_'x dy + SPx = constant (AI)

From the Bernoulli equation_ since Px is constant in the direction of

Y_

1 pV_ lPx = Px - _ = PO, x - _ PV_,x

= constant - _ oV ,x

Substituting for Px in (AI) from (A2)

s/2 l
s/2 dy - s

= constant

(A2)

or
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v 2 _
/ ,xk = constant (AS)

o
0
o

But

ay = cosZ_xU_s/z\v0,x/ _Y

cos21_x [1

d-_/2

Vo,:JVo,W o-h,y

= coS2_x (s - ey, x - _y,x)

Since

and

8x = 8y,x

5x : 5y_x

cos _x t
COS _X

(As)

equation (A4) becomes, with _ = c/s,
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I2 V °'x/

= S cos _x cos _x - z c x
(A6)

Substituting (A6) into (AS) gives

0,x cos _x os _x - _ _x

For the conservation of momentum in the y-direction,

(A7)

s/2 Vz'xVy'xdY = constant

(AS)

From (AS)

s/2

s/2

v z,xVy,x_Y
s/2= tan _x Vz2,xdy

U -s/z

v
: o,xt_ _xj_U2\Vo,x/

dy = constant

(A9)

Then, using (A6) in (A9) gives

V_, x sin _x [cos 8x -
(0) (i + Hx)_Cx

= constant (AlO)

For the conservation of mass flow_

s/2 VzTxdY = constant

s/2

(All)

o
o
o

From equation (All)
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 _I2 Vx
/2 Vz'xdY= v0'X cos _x /2 V0'x

dy = V0_ x

O
O
o

=V0, x cos 6x (s - By, x)= Vo, x os _x - _ _- = constant

or

V0, x os 13x - _ C x
(AI2)

V0, x can be eliminated from equations (A7) and (AlO) by the use of

equation (A12) to give

e (l+l_ x) -_.cos _x os _x - o C x
: constant (AI3)

and

[cosmx
= constant (AI4)

Equations (AIS) and (AI4) provide two equations in the three un-

know-ms (_/C)x , Hxj and 6x for given values of the constants. The val-

ues of the constants can be determined from a known set of values of the

variables at any station x. For the calculations# the reference loca-

tion was taken at the trailing edge. Thus, the constants in equations

(A13) and (A14) were determined as the quantities in the left side of the

equatious at the trailing edge, station re.

Of the three unknowns in equations (AIS) and (AIA), Hx has already

been determined empirically as a function of Hte and x/c in equation

(5). Therefore, with this prescribed variation of Hx, equations (AIS)

and (AIA) can be solved by a double iteration process for the variation
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of (81C)x with xlc for any set of trailing-edge conditions, _te, Hte,

and (8/c)t e. Solutions for (@/C)x , however, can be obtained more readily,

as indicated in the succeeding developments, from consideration of the
A

equations in terms of the momentum-thickness parameter @ x.

Momentum-Thickness Parameter

The momentum-thickness parameter _x is defined as

Ox = c x cos _x

In terms of _x, equations (AI5) and (AI4) become, respectively,

i - _x(i+ Hx)
I

2 coa2_x

(i - SxEx)_
= constant = K I (AI6)

and

sin _x ,El - 8x(l + HX)] = constant =

cos _x(l - _xHx) 2
(AI7)

With the use of the parameter 8x, _x can be eliminated from equations

(AI6) and (AI7) to give

=
(Ale)

Equation (AI8) can be solved for 8x by a single iteration process for

the prescribed variation of Hx (eq. (5)) and a set of trailing-edge
A

conditions_ Hte , 8te , and _te"

o
o
o

Outlet Flow Angle

The variation of outlet flow angle _x can be readily determined

from either equation (AI6) or (AI7). From equation (AI7), for example,

it is obtained that
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{ (_x = tan -I tan _te II_ eteHte / L i - _-_ + _x)-
(Ai9)

Values of _x as a function of x/c are then computed for fixed values

of _te; Hte, and ete from the downstream variations of _x (from eq.

(Ai8)) and Hx (from eq. (5)).

Furthermore_ from the variations of _x and _x determined from

equations (AI8) and (AI9), respectively, families of curves of (@/C)x

against x/c can be obtained for fixed values of ete, Hte, and _te

by varying _ and (e/c)t e so that _(e/C)te = ere cos _te.

I
m

O
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APPENDIX B

MASS-AVERAGED AND AREA-AVERAGED TOTAL-PRESSURE DEFECT

The area-averaged defect in total pressure in a plane normal to the

axial direction (figs. 1 and 3) is given by

i_/-s/2
_A = Sj_sl2 (Po- P)ay (B_)

or, from consideration of the Bernoulli equation and the pressure varia-

tions of figure 2, by

i_ p(vo V2)dy ( 21

For the analytical wake velocity profiles of figure 15, since the pro-

files are symmetrical about the point of minimum velocity at y = O,

equation (B2) can be expressed for the half wake as

f_A = _ DV02 !-O0 1 - _02 dy _ _02 dY

where

= yl(_y/2)

The mass-averaged defect in total pressure is given by

/2 pVz(P 0 - P)dy

= /2

s12oVzdY
s/z

or_ for the symmetrical profile, since _ is constant along y, by

(B3)

(_)
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O

!
H

O

8y/2

i Vo2 v 1-
vo

dy

._Y/ --" _y+ (s

2

IT i

Vo 7 - By)
_0

_f2 v 1 (s
_'o _o dY + [ - 5y)

dY

_Vo_ % dY

dY

(B_)

The ratio of mass-averaged to area-averaged total-pressure defect is

then obtained from equations (BS) and (BS) as, since 8y/S = 8/Sn,

_ V3

AP M
= (B6)

fkPA B i iV V 2

, l- _ % _ v-_d

dY

+

Equations for the averaging ratios of the analytical wake velocity

profiles of figures 15(a) to (d) as determined from equation (B6) are
given in table III.
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Figure i. - Schematic representation of wake development in flow

- about cascade blade sections.
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direction and definitions of wake properties. (Subscript y refers to wake
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erties in plane normal to outlet flow.)



NACA TN 5771 55

o

LO
!

0
0
0

o

,-I

I
I
I

I
I
I
I

I
I
I
I
I
I
I
I

I
I

(.o

4o

,--I

o._
o

o _,
.,-I

,-t

,-tub

e,.._v

o _ o

I
I
I

c0 co _ o.1

OA/UTmA cOT%_ _%TaOTeA-mnmTUTW

o

o.]

co

,-.I

,--I o

+.:,
r.D

o

©

.,.-i

,0.)
,--I

!

o

o

°_

4-_

0

4._

0

0

or-I
r_
0

C_
0

oel

o
o
,--4

",-4

o

o
o

!

NI
.,-4



36 NACA TN 3771

!I
I
I
I

I

i
I
I

0

I

II
I

I I
I

I

i l
I I
L.LI

I I
I I
I i

I I
l a I

P_

/I

I

\

_)r-4
4_ -H

O
r-4_
O ;_

111
___o_ _

_0 D,'ICI<>D O0 O -

0
o0,._

o

___o -

• II 0_ m _I • A vll -

bv

\
AA

v_

\

+_

O _)

O

°_
O

m _

_._

,.-4

.HeH

.r"l

I
I
I

0A/U$m A _o$%_z _%.:OOT_A-mnmT.uT.H

k_)

O_

O

CO _M

•-4 :_

4m

0

s

s

g °
ID %

r--I _/1 O

O %

i1) O

,---I _ O

r-t _
! _ °

N m,--4

,--4 _

_4-_

•el ,-I
",_ % O

• II) r/l

_._

,.r..t

O

0
0
0



NACA TN 5771 57

0
0
0

I

LO

qDCH
0

o

r--I 4_
-rH
o IZl

_H 0

c_

© -P

0

r-I
r.f-i _
0

r_
CD 0

_._ _

I

I

I
I

-o
LO O <O OJ CO _

• • • • • • J

lqq l,Q oq o.1 r-I H

/

/
/

/

I
I
I
I

I

I

I
I
I
I
i
/

I
I

!
!

/

/

2'/
///,//

/J

0
o _o o,,1 co _1 o

o.1 o.1 H i--I _1

oJ

_H

o

H

N
©

+_

u

t/l
._

° _
+_

r-I
i

%
0

H
.r-I

-o

o

i1)

-o

o

©
o

4J
-r4

0
+_

0

g-t
o

o
.r-i

°r--t .,--t

0

0

U'? 0

hi? _
°_



38 NACA TN 3771

2.8

2.6

2.4

2.2

Isolated

airfoil

12

0 13

14

D 15

£] 16

0 17

Cascade

airfoil

@ 1

• 2

@ 3

• 4

• 5

• 6

• 7

• 8

4 9

i0

• ii

0
0
0

o

o

£

2.0

I
1.8' l

l
l

1.6 _l_

:t/',

1.4 _ \

\_ _q-(_):"te:2.a,b:0.02_
-Eq. (4): Hte = 1.4, b = 0.02C

________--_-_ ......

1.0
0 .2 .4 .6 .8 1.0

Chord-length distance downstream, x/c

Figure 6. - Experimental downstream variation of wake form

factor for cascade and isolated airfoils.



NACA TN 5771 59

o
0
0

.012

.O08

o

o" .oo_
.,-I

h

r_

"_ 0

4_
I

.o .008

o

•00¢ 0 0

i I

Airfoil

EF 12

<> 15

14

£h 15

a 16

I

D

[7
X,

(a) Isolated airfoil•

i

Airfoil

O ii

0

C3

0 .2 .4 .6 .8

Chord-length distance downstream, x/c

(b) Cascade airfoil.

1.O

Figure 7. - Experimental downstream variation of wake momentum

thickness for cascade and isolated airfoils.



40 NACA TN 5771

1.00

_ .96 /

i
I

0

0

o
0

,--I

b.

,1:1

,'d

.92

.88

/£"

i
I

m.o..._

Airfoil

NACA 0018, (ref. 9) I
Joukowski, (ref. 8) j experimental

Theoretical (refs. 8 and 9)

.84

I

I
.2 .4 .6 .8

Chord-length distance downstream, x/c

1.0

Figure 8. Typical variation of wake-edge velocity for
isolated airfoils.

+_

!

u
_00

_o
•,-t 4_
,-I

0
_ ,--4
0 (1)

0
.,-.4

4._

1.5

8

-o -_ 1. 2

g
%

4._

_ 1.1
0

1.0
/

0 .04 .08 .12 .16

Displacement-thickness ratio, g_e/S

• 2O

Figure 9. Theoretical variation of ratio of free-stream

velocity at trailing edge to velocity far downstream for

cascade airfoil.

0
0
0



NACA TN 3771 41

0
0
0

_0
I "
H

0

o

Solidity,

i_{e)= 0.020, = 2.0
_ ,_ te Hte

2.0

- _ _ --- ----- :---}l o
.020 0

[.o
_D
,D

t)
.,-i

4m

O

.01S

.010

e) = 0.010, = 1.6te Hte

I

Air angle,

8te' deg

0

30

60

2.0

1.0

O

.O05
0 .2 .4 .6 .8 1.0

Chord-leith distance downstream, x/c

Flgure i0. - Theoretical downstream variation of cascade wake momentum
thickness due to cascade continuity effect.



42 NACA TN 5771

\

i
/,

tt/

\\\

k
\

O cO C4
r-I ,-4 O O

a/q _oI%wa ssan_a!q%-IIn_

-4
-q

Oa
r-4 O O

_(o/_1 - _(o/g) ,o_
ssaun_alq%-IInJ uT as_axaQI

0

t/l

0

-,-4

0

0

0

4m

,-4

0

0

0

III

._

I1/

!

,--4

bO
._

0
O
0



_ACA _N 5771
43

0
0
o

o

,a

t©
I

0

b_
d)

eg_

J
H

J_

o

<

<<b

6O

6O

_te

Firm

factor,

Hte

2.6

2.0

2.6

_1.4

3_ r

30
0

50

.uo

.02

.2 .4

Chord-length distance downstream, x/c

2.6

2.0

....
•6 .8 1.0

Figure 12. - Theoretical downstream variation of air outlet angle

for cascade airfoil.

.08 ¸

.06

i------

_o

co
.04

0

_z
+_

.o
_ ._o_,_. _ ..

o

I'

Air ang le_

_te' deg

0

50

6O

Form

factor,

Hte

2.6

_ }2.0

1.4

,-2.6

'X 2.0
_1.4

[
0 .2 .4 .6 .8 1.0

Chord-length distance downstream, x/c

Figure 15. - Theoretical downstream variation of wake momentum-thicKness

parameter for cascade airfoil.



44 NACA TN 5771

c_ .2

o al
_-_ ...----

O+J O

_'g _.l

0

.2 .4 .6 .8 1.0 1.2 1.4

Chord-length distance downstreamj x/c

Hte _te

"2"6_0 6
2.0
1.&

Figure 14. - Theoretical downstream variation of total-pressure-loss
coefficient for cascade airfoil.

Figure 15. - Theoretical downstream variation of total-pressure-loss
ratio for cascade airfoil.

O
O
O



NACATN 5771 45

O
O
O

0

r-I

0

0

0

El

O
h
c_

G5

q) q_

.c4

O -_
;w m

O

---.-.- II)

cO

g _
,-I I1)

_ 0

©

o o

L °
0 •

I

d

,.rl



46 NACA TN 5771

1.0

.9

o"

o"
.r4

_-_ o

o

.8

.7

.6

.5

1 i I I

__ 0 5
• _ _¢i,_./ I I I I

/,SI_ ngular

, ; _, (//,j ,-
" / '/_/// "Error curve

. i t II,
_t "/ //_Half-s_ne w!ve

_- II li_ /. ¢i / I
i
i." /_/Z : i

I� i ....

j .

Minimum-velocity ratio, Vmin/V 0

(a) Variation with wake-mlnimum-veloclty ratio.

.5

1.0
0

I i l

Minimum -ve i oc i ty
ratio, Vmin/V 0

IJ I

t

/

11

.2 .4 .6 .8

5/s n

(b) Variation with wake full-thlckness to spacing
ratio (average of all profiles).

Figure 17. - Theoretical ratio of mass-averaged to area-
averaged defect in total pressure for representative
analytical wake-veloclty profiles.

O
O
O



NACA TN 5771 47

0
0
0

1.0

.9

.8

.7

o_ .6 _

h 1.0

b_

< .9

.8--

sn

.7

.6
.5

0.9

r

(Triangular profile )

__

£

/
/

/
/

/
/

_ I "_" _ _

_..,---_i# p 17 O,,/

/
I

f
/

/
/

5/s n = 0. I

(Hal:'-sine- wav ._ profile )

(a) Data as measured (range of values of 5/Sn)

Cascade

airfoil

O 1

[] 2
--<> 3

4
v 5

__h_ 6
7

_ 9

<
.4

Derived /_

empirical curve

>
o0

_ o
/

/
/

/

Isolated

airfoil

12

15

16

17

.5 .6 .7 .8 .9

Minlmum-veloclty ratio, Vmln/V0

(b) Data corrected to 6/s n - 0 according to figure 17(b).

Figure 18. - Experimental values of ratio of mass-averaged

to area-averaged defect in total pressure in blade wake.

1.0



48 NACA TN 5771

1.0

j

rJ/i _ /

/
.6

.4 .5 .6 .7 .8 .9 1.0

Minimum-velocity ratio, Vmin/V 0

(a) Variation with wake minlmum-velocity ratio

(from figs. 17(b) and 16(b)).
bD

1.0
5/;n

• g//
y/

0
0
o

.2 .4 .6 .8 1.0 1.2

Chord-length distance downstream, x/c

(b) Variation with distance downstream of trailing edge

(from (a) and eq. (5)).

Figure 19. - Derived variation of ratio of mass-averaged to

area-averaged defect in total pressure in blade wake.

1.4





!

D[ffZCl_OR

NAVAL R_SZA[_CH L_]._A'I_R_"

ATT: TEC_N[CAL LIBRARr

WA3!_INGTON 25, D.C.

(2-7-I0-13-14°16 rHRU 24-26) U-V

TN 3771

!


